Integrating instance-level and attribute-level knowledge into document clustering

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating instance-level and attribute-level knowledge into document clustering

In this paper, we present a document clustering framework incorporating instance-level knowledge in the form of pairwise constraints and attribute-level knowledge in the form of keyphrases. Firstly, we initialize weights based on metric learning with pairwise constraints, then simultaneously learn two kinds of knowledge by combining the distance-based and the constraint-based approaches, finall...

متن کامل

Clustering with Instance-level Constraints

Clustering algorithms conduct a search through the space of possible organizations of a data set. In this paper, we propose two types of instance-level clustering constraints – must-link and cannot-link constraints – and show how they can be incorporated into a clustering algorithm to aid that search. For three of the four data sets tested, our results indicate that the incorporation of surpris...

متن کامل

Exploiting Document Level Semantics in Document Clustering

Document clustering is an unsupervised machine learning method that separates a large subject heterogeneous collection (Corpus) into smaller, more manageable, subject homogeneous collections (clusters). Traditional method of document clustering works around extracting textual features like: terms, sequences, and phrases from documents. These features are independent of each other and do not cat...

متن کامل

Instance-Level Constraints in Density-Based Clustering

Clustering data into meaningful groups is one of most important tasks of both artificial intelligence and data mining. In general, clustering methods are considered unsupervised. However, in recent years, so-named constraints become more popular as means of incorporating additional knowledge into clustering algorithms. Over the last years, a number of clustering algorithms employing different t...

متن کامل

SOM based clustering with instance-level constraints

This paper describes a new topological map dedicated to clustering under instance-level constraints. In general, traditional clustering is used in an unsupervised manner. However, in some cases, background information about the problem domain is available or imposed in the form of constraints, in addition to data instances. In this context, we modify the popular SOM algorithm to take these cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Science and Information Systems

سال: 2011

ISSN: 1820-0214,2406-1018

DOI: 10.2298/csis100906003w